Appendix D. Elevator Control System Case Study

This appendix describes an application of the proof-of-concept prototype, CODA,
described in Chapter 10, to an elevator control system. The specification for this system
consists of aset of hierarchically arranged data/control flow diagrams, one state-transition
diagram, and a textual description. The specification is taken from Gomaa.' [Gomaag3,
Chapter 24] From this specification, CODA generates, with the assistance of an experienced
designer, four designs. One design, for an elevator system that has two elevators and five
floors, uses the default target environment description. For each of two additional
designs, the designer reuses much of the first design but assigns different priorities for
some of the messages exchanged between tasks. In one case, however, the target
environment does not provide priority, message-queuing services, while in the second
case the target environment does provide priority, message-queuing services. These two
designs demonstrate how CODA adjusts a design to map priority messages onto the
available services of an intended target environment. The fourth design, which assumes
the default target environment description, considers an elevator system for a large

building, containing 12 elevators and 48 floors.

' The elevator control problem dates back to at least Donald Knuth. The interested

reader can consult a number of treatments of this real-time application. [Armstrong93,
Jackson83, Knuth68, Meyer93, Sanden94]

534

D.1 Elevator Control System for a Small Building

Figure 59 shows the context diagram for Gomaa’s elevator control system. Asin
previous case studies, the context diagram is annotated with information inferred or
elicited when CODA analyzes the specification. The context diagram differs from
Gomaa's in only one way. Events arriving from external devices are shown in Figure 59
as dashed, directed arcs. These events, needed to aid in automatic classification of
concepts, are not shown in Gomaas context diagram, but can be inferred to exist from
reading the accompanying textual specification.

D.1.1 Analyzing the Specification

Once the data/control flow diagram hierarchy is flattened, the entire data/control
flow diagram for the elevator control system consists of 23 nodes (14 transformations, 8
terminators, and 1 data store) and 44 arcs (23 data flows and 21 event flows). After
loading the specification, the designer asks CODA to analyze the specification. CODA
begins by attempting to classify concepts on the data/control flow diagram.

D.1.1.1 Classifying Concepts

CODA inquires about the nature of the terminators and then proceeds with
concept classification until, during stimulus-response classification, an ambiguity
appears. CODA cannot determine which, if either, of a pair of data flows exchanged
between two transformations, Scheduler and Accept New Request, is sent in response to
the other. On this point, CODA consults the designer. The designer recognizes that

neither of these data flows is sent in response to the other; rather the data flows are

WRISAS [01U0D JoTRAS [T Ue Joj WelBe1q 1Xeuo) “6G ainbiH

Elevator
Lamps
[Device @]

Floor
Buttons
[Device @]

Elevator \
Button

Floor Button

Floor Button
Press

Press Elevator Lamp Request s
. / =
[Interrupt =] Output [Input =] [interrupt =
PR [Output =] [Max. Rate .5
Elevator per sec. *]’,' Floor
Buttons Elevator Button ‘ “ Lamps
[DEVICG @] — Request F N Floor Lam [DEVICG @]
[Input =] Elevator Output
Output =
Max. Rate .5 —®» Control [Output =]
per sec. } System
Motor Response 0 Door Response
[Input =] [Input =]

Elevator Motor Command ‘. Door Command Elevator
Mqtor [Output =] Floor [Output =] Dgor
[bevice @] Direction Lam Sensor T [bevice @]

Output [ILZ‘LL{[_]
= = Floor Arrival
[Output =] [Max. Rate .1

Direction
Lamps
[Device @]

per sec. *]

\

Sensor Change
[Interrupt =]

Sensors

Floor Arrival

[Device @]

GES

536

independent of each other.

Another ambiguity arises during the final stage of classification. CODA cannot
establish whether one transformation, Check This Floor, is a synchronous function or an
asynchronous function. Upon consulting the designer, CODA learns that the time spent
executing the transformation might unduly delay the invoking function, Floor Arrival
Sensor (see Figures 62 and 63, where the relevant elements of the data/control flow
diagram are shown). The designer made this judgment after reading the textual
specification accompanying the data/control flow diagrams. CODA completes the
remainder of the concept classifications without consulting the designer.

D.1.1.2 Eliciting Additional Information and Verifying the Specification

After al concepts are classified, CODA determines that certain input data flows
require a maximum rate. This information can be used during design evaluation to help
assess the schedulability of the design. Next, finding no exclusion groups defined for the
specification, CODA invites the designer to define one or more exclusion groups. The
designer declines. CODA then invites the designer to define aggregation groups. Based
upon the textual specification accompanying the data/control flow diagrams, the designer
recognizes that each elevator comprises a door, a motor, a set of lamps, and a set of
buttons. For this reason, the designer accepts CODA'’s offer and defines an appropriate
aggregation group for the elevator.

Next, CODA, finding no locked-state events defined for the specification, offers

the designer the chance to denote locked-state events. The designer analyzes the

537

state-transition diagram, Figure 60, for the only control transformation, Elevator
Contraller, and finds eight locked-state events. These locked-state events occur because
the Elevator Controller, in most instances, takes one action and then awaits a response
before moving on to a new state. In fact, only two event flows, Up Request and Down
Request, do not qualify as locked-state events. These event flows do not qualify because
each of them can arrive any time a client presses a floor button or when the scheduler
schedules an elevator. The remaining events can only arrive when the Elevator
Controller is expecting them.

After completing elicitation of specification addenda, CODA inquires whether the
designer wishes to update the cardinality of any nodes.? Here, the designer decides to
establish cardinalities for each node in order to correspond to a specific size of building,
five floors, and a specific number of elevators, two. Idedly, a design for the elevator
control system would be independent of cardinality; however, CODA makes a number of
decisions about task inversion and module placement that depend upon the relative
cardinalities of various transformations and data stores.

To complete the specification analysis, the designer checks the state of concept
classification and also verifies that al axioms are satisfied. The specification is then
saved in preparation for design generation.

D.1.1.3 Annotated Data/Control Flow Diagram

The results from CODA'’s analysis of the specification are presented as an

annotated data/control flow diagram, shown in Figures 61 through 64. Figure 61

>The default node cardinality is one.

538

Up Request
Close Door

h 4

Elevator
Idle

Down Request

A

h 4

Destination Up

Door Closing
to Move Up

Door Closed
Up

A

Elevator
Starting

A

Close Door

Door Closed

A 4

Door Closing |
to Move Down

Elevator Started
Departed

A

Elevator
Moving

Approaching
Requested Floor

Stop

A

Elevator
Stopping

Elevator Sopped
Stop, Arrived

A

Elevator Door
Opening

Down

Door Opened

Destination Down
Close Door

Elevator at

Close Door

No Destination

Checking Next
Destination

<

Pause Time Elapsed

Floor

-
Trigger Check Next Destination

Figure 60. State-Transition Diagram for the Elevator Controller

WeISAS [041u0D oA |3 8y} Jo uonisodwodag wesAsgns “T9ainbiH

Elevator Button Request
[Input =]
[Max. Rate .5 per sec. *]

/

\

Floor Button Press
[Interrupt =]

Floor Button Request

[Input =]
[Max. Rate .5 per sec. *]

Floor Lamp
Output
[Output =]

Elevator /
Lamp Door /

Motor Command Output Command
[Output =] [Output =] [Output =] Door
Response
[Input =]
Floor Sensor Input _——
[Input =]
4 [Max. Rate .1 per sec.

Motor Response
[Input =]

Floor Arrival
Sensor Change

[Interrupt =] \

Elevator /

Button
Press

[Interrupt =]
Scheduler

Request
[Stimulus +]

Elevator
Commitment
[Stimulus +]

Elevator
Status
[Stimulus =]

[Stimulus =]
Elevator

Arrived
[Stimulus =]

Scheduler
3
[Asynchronous
Function =]

Service
Request
[Stimulus =]

Direction Lamp
Output
[Output =]

6€S

540

+

[=ndino]
puewwod

100Q

_ [= reubis] [=199l00
m@ WMW_WOQ pauado ndino aainag
~ [=mndu] m\:mm.mvnt . J00Q anissed]
asuodsay Jooq e e T
10IABA3[T
. [=reubis] :
'L, Paso|D .

*-dooQ

!

[= indino]
indino
dwe Jorens|3

[= sninwis]

. [=reubis]
= jeubi; 100Q N panLy
[= jeubis] : “ooam\ . uado | orensig [= sninups]
= [BUDIS] JaquinN
paueIS Jorens|3 8s010 - 10014
N [= reutis] o
= 100l umog _
n@ wum\._ww -« I=peunis] EmEmmM%z [Mﬂﬁﬁ&
 [=mndu] onsse] dn pue san
asuodsay Jo10N - [= reunis] |0uod 1ens|3
" dos 101eA9|T
...... T vm.&.\.m.\.:::::‘ = sninuwins]
o] = panLLY
paddois Jo1ens|g [= sninwns] fistiond

Snjels J101ens|3 [+ sninwis]

\

[= ndinQ]
puewiwo) JoloN

1sonbay [sminums] snyeis
J3INP3YDS Juswnwwiod Jorens|3

[= sninuwns]

.

loyrens|3

[« "08s 1ad T 810y "XEWN]
[= nduj]
ndu| Josuas Jooj4

[=1algo
nduy aaineg
snouoayauAsy]
€1
10SUSS [eALUY
1004

[=198lq0
1nduyj aaimnag
snouo.iyaufsy]

Jl01ens|3

[+
'08s Jad G a1ey ‘xen]
[=nduy]
1senbay
uonng Joyena|g

[= 1dn.usu]
abuey) Josuas——
[eALy 100|4

[= 1dn.usu]
ysnd
uonng

loyrens|3 /

f the Elevator Subsystem

62. Decomposition 0

Figure

541

Door
Closed

Open
Door [Signal =] poor
Opened [Signal =] cjose
Elevator .-}
[Signal =] Door
Stoppec [Signal =]
[Signal =]
Elevator
Started
[Signal =,
Down
[Signal :]\ Elevator Destinati
+«——_ Up Controller ... esLIJr;a fon
[Signal = 111 [Signal =]
Stop _— [Control
«—— [Signal =] Object =] el Destination
Approachin T Down_
g . . .
. *. [Signal =] \
Requested A B Trigger [9/] :
) Floor ~ . ‘ . [Trigger =] .
Check This [Signal =] - | |
Floor o . Departed R
1.1.3 - B [[Signal=] el P
[Asynchronous Arrived K No el
Function +] [Signal =] ", N Destination
7 Elevator : R [Signal =]
Status) A 4 [Triggered
[Stimulus = Asynchronous
Floor Elevator 115 Elevator Function =]
Number <4+— Status [Triggered Arrived —»
[Stimulus =] [Stimulus =] Synchronous [Stimulus =]
Function =]

Up Requesi‘g

[Update =]

[Retrieve =]

[Store =]

[Signal =]

Down Requesf e

[Signal =]

. Elevator Status
. and Plan
[Data Store #]

/V

Elevator Commitment

[Store =]
’ [Stimulus +]

Accept
Scheduler

Elevator New Request
Request 1.1.2 <4——— Request
[Stimulus =] [Asynchronous [Stimulus +]
Function =]

Figure 63.

Decomposition of Elevator Control and Management

542

<4—— Output

<+—

Floor Button
Request
[Input =]

[Max. Rate .5
per sec. *]

Floor Lamp

[Output =]

Direction Lamp
Output
[Output =]

Floor Button
Press
[Interrupt =]

Floor
Button
21
[Asynchronous
Device Input
Object =]

Floor

[Passive
Device Output
Object =]

Direction
Lamp
2.3

[Passive
Device Output
Object =]

Service Reque
[Stimulus =]

Elevator
Arrived
[Stimulus =]

Elevator
Arrived
[Stimulus =]

\ Elevator

Status

St

[Stimulus :]\

Figure 64. Decomposition of the Floor Subsystem

decomposes the elevator control system into three subsystems. Two of these subsystems,
Elevator and Floor, are further decomposed. The decomposition of the Elevator
subsystem is given in Figure 62. Five of the six transformations in Figure 62 are
annotated with their classifications; one transformation, Elevator Control and
Management, is decomposed further, as illustrated in Figure 63. The decomposition of
the Floor subsystem is depicted in Figure 64.

D.1.2 Generating the Design

After completing specification analysis, the designer decides to structure tasks as
a first step in the process of generating a concurrent design. CODA requires no
consultation with the designer, except as needed to assign new task names.

D.1.2.1 Structuring Tasks

Table 47 gives the outcome of CODA's task structuring, including: the tasks
created, the transformations allocated to each task, and the criterion used in determining
each allocation. The designer saves the results of the task structuring before moving on
to other design chores.

D.1.2.2 Structuring Modules

Next, the designer decides to structure the transformations and data stores into
information hiding modules. As with the task structuring, CODA requires no
consultation with the designer, except for renaming modules and operations. The
designer saves the results from module structuring. Table 48 reports the results of

CODA’s module structuring for the elevator control system.

Table47. Task Structuring Decisions for Elevator Control System

Task

Transformation

Structuring Criterion

Elevator Manager

Accept New Request

Asynchronous Internal Task

Scheduler

Scheduler

Asynchronous Internal Task

Monitor Elevator Buttons

Elevator Button

Asynchronous Device I/O Task

Monitor Floor Buttons

Floor Button

Asynchronous Device I/0 Task

Monitor Arrival Sensors

Floor Arrival Sensor

Asynchronous Device I/0O Task

Elevator Controller

Control Task

Check This Floor Asynchronous Internal Task &
Sequential Cohesion
Elevator Controller Check Next Destination | Triggered Asynchronous Task &
Control Cohesion
Door Aggregation
Motor Aggregation
Elevator Lamp Aggregation
Update Status Control Cohesion
Floor Lamps Monitor Floor Lamp Resource Monitor Task

Direction Lamps Monitor

Direction Lamp

Resource Monitor Task

Table 48. Module Structuring Decisions for Elevator Control System

Module

Transformation/Data Store Structuring Criterion

Elevator Status and Plan

Elevator Status and Plan
Check Next Destination
Check This Floor
Accept New Request
Update Status

Data-Abstraction Module
Read Operation of DAM
Update Operation of DAM
Update Operation of DAM
Update Operation of DAM

Elevator Control STM

Elevator Controller

State-Transition Module

Elevator Button

Elevator Button

Device-Interface Module

Floor Button

Floor Button

Device-Interface Module

Arrival Sensor

Floor Arrival Sensor

Device-Interface Module

Floor Lamp

Floor Lamp

Device-Interface Module

Direction Lamp

Direction Lamp

Device-Interface Module

Door Door Device-Interface Module
Motor Motor Device-Interface Module
Elevator Lamp Elevator Lamp Device-Interface Module

Scheduler Algorithm

Scheduler

Algorithm-Hiding Module

546

D.1.2.3 Integrating Tasksand Modules

Once both tasks and modules are structured, the designer decides to integrate the
two views. CODA completes the integration without help from the designer.

D.1.2.4 Defining Task Interfaces

To complete the design for the elevator control system, the designer needs only to
define the interfaces among tasks. CODA does not need to consult with the designer for
most decisions; however, since the designer is experienced, CODA, noticing that at least
one task receives queued messages from multiple sources, invites the designer to consider
assigning different priorities to the appropriate messages. In this case, the designer
declinestheinvitation.

After the task interfaces are defined, CODA offers to let the designer review and
rename the new design elements. Once renaming is completed, the designer saves the
design and then asks that task and module specifications and design histories be written
to disk. Following the generation of specifications and design histories, CODA checks
the design for completeness and consistency and writes a design summary to disk.
Figures 65 and 66 show, in two parts, the design summary and completeness and
consistency report for the elevator control system design.

D.1.25 The Completed Design

The design generated by CODA for the elevator control system is depicted in
Figure 67. This design differsin severa details from the solution given by Gomaa. One

difference of note is that CODA'’s design includes two Elevator Manager tasks, while

547

Specification: Elevator Control System
TED: A Default Environment (Message Queues, No Priority Queues)
8 TASKS

TASK 1 Elevator_Manager

TASK 2 Scheduler

TASK 3 Monitor_Elevator_Buttons
TASK 4 Monitor_Floor_Buttons
TASK 5 Monitor_Arrival_Sensors
TASK 6 Elevator_Controller

TASK 7 FHoor_Lamps Monitor
TASK 8 Direction_Lamps_Monitor

11 MODULES

IHM 1 Elevator_Status and Plan
IHM 2 Elevator_Control_STM
IHM 3 Elevator_Button

IHM 4 Floor_Button

IHM 5 Arrival_Sensor

IHM 6 Floor_Lamp

IHM 7 Direction_Lamp

IHM 8 Door

IHM 9 Motor

IHM 10 Elevator_Lamp

IHM 11 Scheduler_Algorithm

COMPLETENESS REPORT

Each transformation is allocated to at least one task
Each transformation is allocated to a module

Each data store is allocated to a module

Each directed arc is allocated to the design

Each two-way arc is allocated to the design

Figure 65. Design Summary and Completeness and Consistency Report
(Part One of Two)

CONSISTENCY REPORT

Each module is either contained in atask or

isaccessed by atask or by another module
Each module provides at least one operation
Each operation is provided by amodule
Each task receives at least one input
Each task appears to write some output
Each internal event is both generated by and accepted by atask
Each external event and each timer event is accepted by atask
Each datum is either read or written by some task
Each message is either sent and received by atask

or iscarried in another message

Each queued message is held by a queue
Each queue holds at least one message
Each queue is either consumed by or encapsulated within a task

or is asubqueue for a priority queue
Each priority queue heads at |east one subqueue
Each priority queueis either owned by or enclosed within atask
Each message dataisincluded in a message
Each parameter is either taken, yielded, or altered by some operation
No operation is provided by more than one module
No module is contained by more than one task
No event is accepted by more than one task
No event is generated by more than one task
No datum is written by more than one task
No queue is consumed by more than one task
No queue is encapsulated by more than one task
No queue is both consumed and encapsul ated
No priority queue is owned by more than one task
No priority queue is enclosed by more than one task
No priority queue is both owned and enclosed
No queue is a subqueue more than one priority queue
No queued message is held by more than one queue
No message is sent by more than one task
No message is received by more than one task
No message datum is included in more than one message
Each message carried in another message is carried in exactly two messages
No tightly-coupled message answers more than one message
No parameter isyielded by more than one operation
No parameter is taken by more than one operation
No parameter is altered by more than one operation
No parameter is both yielded and altered

Figure 66. Design Summary and Completeness and Consistency Report
(Part Two of Two)

549

indino dwie Jooj4

indino dwe uondang

sobessa\ sabessay
dwen dwen
Jo0|4 uondalg -_
dweq
uonoalg
J01uoN sdwe oo J100UON sdwe uondang
abueyd
PaALLY sneis [eALYy
Jo1ena|3 Jo1en3|3
ndino
dwe Jorens|g "
asuodsay Jood —_— [] TCR]
1] 1078AD m*z._.w |oluod
puewwo) Jooqg 44—] I J01ens|3
100Q abueyd
asuodsay 1010\ J010 snjeis

puewwo) lojo) ————

101693

uoneunsaq

%934yD

100|4 MAN

smels arepdn

ue|d ayepdn

ue|d pue snjeis 10jeAs|3

13]|013U0D J0yend|]

1sanbay umoq
1senbay dn

Jabeuep

JUBWHWWOD

o1ensi3 S9010N

pue
1sanbay
BJINIBS

1sanbay @
18|Npayds

wyniob|y
19|Npayds

l0jens|3

19|Npayos

sisenbay
l0jens|3

1sanbay
1apr

1senbay
ELIVEL

induj 1dnuayu|
losuas losuas
[eALly [eALLY

10suas
[eALy

S10SU3S [eAlllY JO)UON

ndu| 1dnuiaiug
uonng uonng
J100|4 J100|4

uonng
100|4

suonng JoojH JoNUoW

ndu 1dnuiaiug
uonng uonng
101eA3|3 1o1en3|3

uonng
lojens|3

suoyng J0yeAs|3 JO)UON

Figure 67. Generated Design for the Elevator Control System - Default Target

Environment - No Messages Assigned Priority

550

Gomaa’s solution uses a single Elevator Manager task. CODA produces two tasks based
upon the cardinality of the transformation, Accept New Request, from which the Elevator
Manager task is allocated. Gomaa decided that only one Elevator Manager task is
required. Gomaas decision results from an understanding that the processing in the
transformation, Accept New Request, is rather smple and easy to invert, whereas, the
processing represented by the control transformation, Elevator Controller, and its
aggregated objects, is complicated and more difficult to invert. In addition, Gomaa
envisions a design where a single Elevator Manager task can provide inputs to numerous
Elevator Controller tasks. CODA isincapable of reaching this same conclusion from the
facts at hand.

A second difference occurs in the interface between the Elevator Manager and
Elevator Controller tasks. CODA maps two event flows, Up Request and Down Request,
from the Elevator Manager onto software signals for the Elevator Controller task. CODA
takes this mapping because the Elevator Manager and the Elevator Controller must
synchronize on these events and because the default target environment description
indicates that up to two inter-task signals are supported between each pair of tasks in a
design. Gomaa chooses to map these event flows onto a tightly-coupled message.
CODA might also choose to map these event flows to a tightly-coupled message, but
only when the number of event flows to be sent between a pair of tasks exceeds the

maximum permitted for the target environment.

551

A third difference between CODA's design and Gomaa's solution involves the
interface between the Scheduler and two other tasks: the Elevator Manager and the
Elevator Controller. CODA maps two data flows, Elevator Commitment from the
Elevator Manager and Elevator Status from the Elevator Controller, to queued messages
for the Scheduler. Gomaa, instead, maps these data flows onto accesses to a data store,
Elevator Status and Plan. This difference results from the fact that Gomaa constructed
the data/control flow diagram in anticipation of a distributed solution. Examined in light
of distributing the Scheduler task to a separate processor from the Elevator Manager and
Elevator Controller tasks, the data flows between these tasks must be mapped to
messages. When Gomaa, instead, uses the same data/control flow diagram to generate a
design for a single-processor system, he decides simply to replace the data flows to the
Scheduler with accesses to a data store, Elevator Status and Plan, shared among al three
tasks. Asasecondary effect, Gomaa's solution shows an operation, Select Elevator, for a
data-abstraction module, Elevator Status and Plan, not included in the design generated
by CODA. Gomaa's aternative mapping leads to an efficient solution for cases where the
design will run an a single processor system. CODA is unable to make these kinds of
adjustments, and must, therefore, adhere more closely to the structures shown on the
data/control flow diagram.

The mapping generated by CODA, while suitable for a distributed design, leads to
an inefficient solution for cases where the design will execute on a single processor. For

CODA's design, the Scheduler must be assumed to maintain an independent view of the

552

plan and status for all elevators and must be assumed to update this view based upon
messages received from the Elevator Manager and Elevator Controller tasks. Since the
Scheduler subsystem is not decomposed further on the data/control flow diagram, these
additional details are not included in the design.

Another difference between the design generated by CODA and the solution
provided by Gomaa involves an operation of the Elevator Status and Plan
data-abstraction module. CODA generates an operation, Update Status, not included in
Gomaa's solution. In adiscussion about this point, Gomaa indicated to the author that the
operation should be included in his solution. The operation was simply overlooked in the
design produced by Gomaa. [Gomaag3, Chapter24]

D.1.3 Differentiating Queued Messages by Priority

Suppose the designer believes that the elevator control system will run more
smoothly if preference is given to decisions that involve the scheduler. If this were the
case, the designer might decide to give higher priority to messages exchanged between
the Scheduler task and the internal, control-related tasks, that is, the Elevator Manager
and the Elevator Controller tasks. This policy can be incorporated into the design by
redefining the task interfaces. First, the designer moves an appropriate copy of the design
produced previoudly, that is, a design with the task and module structures defined and
integrated, to a new workspace. The movement of designs between workspaces is
conducted outside the prototype, using file copy facilities from the hosting operating

system. Then, the designer restores the partial design and repeats the definition of the

553

task interfaces. Since the designer is experienced, CODA invites the designer to assign
message priorities. In this case, the designer accepts the invitation and assigns a higher
priority to requests received by the Elevator Manager task from the Scheduler task. The
designer also assigns higher priority to messages received by the Scheduler when those
messages arrive from the Elevator Manager task or the Elevator Controller task. In
effect, messages generated within the elevator control system are given preference over
reguests from outside the system. After message priorities are assigned, CODA allocates
message-queuing mechanisms, as appropriate, and then invites the designer to review and
rename task-interface elements. Once renaming is complete, the designer saves the
design and then writes the specifications, histories, and summary to disk.

D.1.3.1 Priority Message Queuing Services Unavailable

The alternate design generated by CODA based on varying message priorities is
shown in Figure 68. Since the designer uses the description for the default target
environment, priority message queues are unavailable. For this reason, CODA simulates
priority message queues by alocating a separate message queue for each priority level
and then maps messages into the appropriate queues by priority and destination.

D.1.3.2 Priority Message Queuing Services Available

CODA need not have smulated priority message queues had the designer chosen
to use a target environment description where priority message queues are available.
Suppose the designer loads a target environment description that includes priority

message queues. Loading a new target environment description requires any design in

554

nduy 1dnuiaiug
Josuas Josuss
ndino dwe Joo|
ndino 7 10014 indino duwre uonoala ALY [enuY

sofessa\ sabessapy
dwen dwen
Joo|4 uondaia

=

dwen
uondang

10SUas
[eALy

J0)uo sdwe uondoang

J0)uo sdwe Jooj4

abueyd SI0SUSS [BALLIY JONUON
pany smeis [eALy
107eA913 1016913
nduj 1dnueiu)
uonng uonng
indino 100|4 J100[4
]
dweT Jojens
asuodsay J00Q —_— [] e
Lo m>m._m*z.rw louog
puewwod J00q — 4 BASIE orenalg
100@
asuodsay 10J0N 1010 abueyo
snieIs 1senbay
+—
puewwo) 1010 Jstiguest ELIIVEL
uonng
uoneunsaq Ewwﬁm_m_mEoo 40014
¥99uD 19]|01U0D J01eAs|T 13
0 Aiond
T Aoud Jsenboy suonng 100|4 J0}UON
S90ION .
woisnd

101eA8|3 _ J_J

1Isanbay umoq
‘1senbay dn

induy 1dnusi|
T Awoud uonng uonng
mumwj_uww_ Hmmzwmm @ lojens|3 lojens|3
13INP3YdS 18|npayds

wymobly
19|Npayds

|—l_l_| 19|Npayos

ue|d pue snjejs J0jeAs|3
Jabeuen
lojens|3

0 Aoud 1senbay 1
sisanbay Jawolsn)
Jawoisn)

uonng
lojens|3

suonng J0yeAs|3 J0HUOWN

Figure 68. Design for the Elevator Control System - Default Target Environment -

Queued Messages Assigned Varying Priorities

555

progress to be deleted from memory because the existing design might no longer reflect
the proper target environment. The designer then restores an existing copy of a partially
completed design that was moved previously to the appropriate workspace. Assuming
that the preexisting design lacks a definition for task interfaces and that the designer asks
CODA to define task interfaces, Figure 69 shows the alternate design generated based on
the new target environment description.

D.2 Elevator Control System for a Large Building

Suppose that a design is required to control twelve elevators in a large building
with 48 floors. Given the description for the default target environment, CODA extends
its use of task inversion to cover the Elevator Manager and Elevator Controller tasks.
This occurs because the total of twelve elevators exceeds the task inversion threshold, set
a eight for the default target environment. The resulting inversion of the Elevator
Manager and Elevator Controller tasks causes CODA to define some of the interfaces for
these tasks differently from the interfaces defined in the previous designs for a smaller
building. Figure 70 depicts the design for alarge building, as generated by the prototype.

The Elevator Manager and the Elevator Controller tasks, replicated in previous
designs, are now each implemented by a single task. Context switching between
elevators must be handled within each of the tasks. Consequently, the Direction Lamp
and Floor Lamp modules are no longer accessed by multiple tasks. For this reason, these
two, device-interface modules are now placed within the Elevator Controller task, rather

than within separate, resource-monitor tasks. Two other design changes also appear.

556

ndino dwre Jooj4

sabessa\
dwen
Jooj4

J0)uUoW sdweT Joo|4

ndino dwe uondaung

sabessa\
dwen
uonoalg

dwen
uondallg

Jo)uo\ sdwe uondalig

abueyn
PaALLY sneis [eALLY
loyena|g lo1ena|3
indino)
dwe Jorens|3
] 1]
asuodsay 100Qq —_—)] e
] [101ens mw,_._.m 104u09
puewwo) 100Q 4—] 13 Jorenalg
100Q@
asuodsay 1010\ 1010 abueyn
snyeis
<+
puBwWWOD I0I0N Lorensg
uoneunseq Eww:mw:mr:oo
09UD 19]|00U0D I01eAS|T eS|
J100|4 MaN

1sanbay umoqg
“1senbay dn

snjels arepdn

ueld arepdn

ue|d pue snjeis 10jens|3
Jabeuep
l0ojens|3

=

wyobly
13|Npayds

1senbay
18|Npayds

-]

sisanbay 1sanbay
101eA3|3 19piy

1senbay
ELIIVEL

S80110N
pue
sisanbey
BJINIBS

19|Npayos

nduj 1dnuau)
Josues Josuas
[eALy [enLy

losuas
[eALy

SI0SUSS [BALLIY JO)UOWN

nduj 1dnus|
uonng uonng
100|4 100|4

=

uonng
100[4

suonng 100|4 10JlUoN

nduj wdnus|
uonng uonng
loyena|3 loyena|g

uonng
lojens|3

suonng J0jeAs|3 10JUoN

Figure 69. Design for the Elevator Control System - Priority Message Queues Available

- Queued Messages Assigned Varying Priorities

557

ndino dwe Jooj4 indino dwe uonoaug

1 1

1S |013u0D
‘_Oum>w_m3_ 101eAa3

100@
- m m
weT dweq

1004 uondaIQ

puewwo) J00q

indino —
dwe Jorens|3 — 1
] []
asuodsay JooQg _—)]] e
I I
]
asuodsay J010N _—)

puBwWOY I0}0N

Toneunsad 13||013U0D J0yens|q

%0940

1senbay
snrels arepdn MON
ueld arepdn
ue|d pue snjels Jojens|3 1abeuepy
lo1ena|3

sysanbay
Jojens|g

abueyp
snyeis
lo1ena|g3

S[eALly

JUSWHWWOD
101eA9|3

1senbay
19|Npayds

[eALY

S9910N
pue

sisanbay

1senbay
Japry

wymobly
19|Npayds

BJINIBS

13|Npayos

1senbay
ELIVELS

nduj 1dnuau)
Josuss Josuas
[enLy [enLy

10SUas
[eALy

SI0SUSS [BALLIY JO)UOWN

nduj 1dnua|
uonng uonng
100|4 100|4

uonng
100[4

suonng 100|4 J0JiuoiN

nduj wdnus|
uonng uonng
Jorens|3 Jorens|3

uonng
lojens|3

suonng J0yeAs|3 J0HUOWN

Figure 70. Design for the Elevator Control System - Default Target Environment -

Large Building (12 Elevators and 48 Floors)

558

First, the interface between the Elevator Manager and the Elevator Controller tasks is
now defined to be a tightly-coupled message, rather than two software signals. CODA
makes this change because the destination of the event flows, Up Request and Down
Request, can no longer be identified solely from the receiving task. Instead, the Elevator
Manager task must include data along with each event flow to identify the specific
elevator for which the events apply. A second design change involves the Arrival
messages received by the Elevator Controller task from the Monitor Arrival Sensors task.
These messages are now placed into a message queue, Arrivals, for the receiving task,
Elevator Controller. Since the Elevator Controller task handles multiple elevators, the
possibility exists that the Elevator Controller task will not be ready to receive an Arrival
message at the time the message is sent. To avoid delaying the Monitor Arrival Sensors
task, the Arrival messages must be queued.

Severa differences in the various designs generated by CODA for the elevator
control system result from differences in element cardinalities, relative to the task
inversion threshold. Ideally, a designer might strive to produce a design that does not
vary based on the number of elevators and floors within the target building. To achieve
this goal, a design for a distributed elevator control system appears attractive. Such a
design requires replicating the Elevator Controller task and the Elevator Manager task for
each elevator and mapping each pair of these tasks to a processor for each elevator. The
tasks for the floor subsystem might then be allocated to a separate processor, as could the

Scheduler task. As currently defined, CODA cannot contemplate such trade-offs.

